Institute of Technology, Carlow
Computing

Course: BSc (Hons) Software Development Year 4
Author: Eamonn Gaynor
Student ID: C00197458
Tutor: Mr. Nigel Whyte

Document: Design Document

Plant Disease Identification Application

Institidid Teicneolaiochta Cheatharlach

INSTITUILE: of
TECHNOLOGY

CARLOW

At the heart of South Leinster

Contents
SYSTEIM ATCRITECIUIE ... ettt ettt et e s te e be et e s te e s e beesaesesbeensesteesaensesreensessennnas 3
USE CBSES ...ttt bbbt a bbbt b e s h e b b n ettt n b sa s 4
USE CaSE DIAGIAM.......eiuiriiitirtiteieieii ettt ettt ettt et b et sbe b et e e e st e st bt sb e e b e sa et et e e eneesenbensennenee 4
DELAIEU USE CASESeoveeitirteieeetete ettt sttt sb et ettt b e b bt b et e e st benbesbe b e 5
SR I o TR 5
2. Change PaSSWOITcccueviiiuieiiiiieeeste sttt ettt e et s te e e s tesra et esteeaaestesreetesbeensesteessensesanenes 5
R o To 0 11 USSR 6
4, UPI0AA IMAGE..... .ottt sttt ettt be e nre 6
5. SAVE RESUIL....eeeeee e bbbttt eb e ae bt 7
B, AQU NEW USEN ...ttt ettt 7
N 1Y, =T T o T O LT TSRS 8
8. AU NEW DISBASE.......cueiueruietirtirtesterteteteit ettt sttt sttt ettt besa e sttt e e e et ebesaesbentens 8
9. MANAGE DISEASES.eueeueeuieuietirteetestest ettt ettt ettt sttt ettt a e bbb bttt ettt ebe e b e 9
10. Create REPOMc.eeiieeeieeteeese ettt ettt b et sbe et sb e et e bt sae et e sneeanes 9
SYSTEM SEQUENCE DIAGIAMSccuveiicveeieeteee ettt ettt st et e st e s et e s te et e beeaeessesbeesaesteeraensesteessensesseenes 10
IO I o OO SRR 10
2. CRANQE PASSWOITc.eiuieiieiiitirieetestesteste ettt sttt ettt b e sb e bt s et ebesseebenaens 11
K o o o | O TPPRRRPRR 12
L O o] o Uo I [y 0T Vo - SRR 13
5. SAVE RESUIL....ceeieeeeeteet ettt ettt 14
B. AQT NEW USEN ...ttt ettt nenteneas 15
T. MANAGE USEIS...eiiiiiieiieeeiee ettt ettt ettt ettt sate e sttt e sttt e sbe e s bbeesabeesbbeesaseesabeeesabeesasaessaeasareesnns 16
8. AU NEW DISBASE.......cueriiuiiriiiiiieieiei ettt sttt 17
0. MaANAQGE DISBASE ...veveeeieeteeeiecteeteete ettt te et e st e s te et e s te e e et e eteebesbeeabesteebaenbesteesaebeeaseteabeentesteeraans 18
10. GNEIALE REPOITS. ... eeieeiee ettt eee ettt e et e e e e e e st e e e bt e e s saeesnteeebeeesnseeenseeesnseeeseeesnseean 19

System Architecture

SQL Database

Web API

Mobile Application Web Application

User

Aministrator

Use Cases

Use Case Diagram

*Note: Diagram taken from Functional Specification document.

Mobile App

Change Password
Upload Image

Save Result

Web App

Add New User

Add New Disease
Create Report

AP
AttemptLogin
EditPassword

Log Record

Vo N N

A CRUD Diseases
..

Database

User Table

Log Table

Disease Table

,_/‘ Report Table

Detailed Use Cases

1.

Login

Use Case: Login

Actors: User, Mobile App, API, Database

Description: This use case occurs when a user attempts to login into the system. The user enters
a username and password, in which the system will validate to ensure the credentials are correct.

Main Success Scenario:

Noook~owe

© ©

10.

User enter their username and password.

Existing users enter their username and password.

New users are presented with a link to sign up.

Username and password fields are checked for minimum requirements.

Network connection is checked for availability.

Credentials are sent to the web API.

Credentials are sent to the database from the API for validation against the User Table
records.

Result of validation, true or false, is sent back to the API.

API sends result back to mobile app.

Mobile app outputs message with either successful, or unsuccessful login attempt.

Change Password

Use Case: Change Password

Actors: User, Mobile App, API, Database

Description: This use case occurs when a user attempts to change their login password. The
username must first login with their credentials to access this feature.

Main Success Scenario:

MobdRE

o o

User selects change password function.

User enters current username and password.

User enters new password, twice.

Validation is processed to ensure current password is correct, and new password is not the
same as current password.

Network connection is checked for availability.

New credentials are sent to the web API.

New credentials are sent to the database from the API for validation against the User Table
records and to update.

User table is updated with the password.

Database sends confirmation back to API

10. API sends result back to mobile app.
11. Mobile app outputs confirmation message with either successful, or unsuccessful change
password attempt.

3. Logout

Use Case: Logout
Actors: User

Description: This use case occurs when a user wishes to log themselves out of the system. A
user will simply select the logout option provided.

Main Success Scenario:

1. User selects logout option on main menu.
2. The mobile app logs the user out of the system.

4. Upload Image

Use Case: Upload Image
Actors: User, Mobile App, API, Database

Description: This use case occurs when a user wishes to upload an image to the system, for plant
disease processing. The user must capture an image or select previously stored image in memory.
The system will process the image using computer vision to techniques, to successfully deliver a
diagnosis of the plant back to the user.

Main Success Scenario:

User selects upload image feature.

The camera is accessed and displayed on screen with an option to upload a stored image.
User takes a picture from the camera.

The image is saved to the device.

The image is sent to the API, where it is sent to the database to be stored.

The saved image is sent to the API, where computer vision techniques are performed to
determine result.

7. Result is sent to back to the mobile app, and a description of the disease is presented to the
user.

I e

5. Save Result

Use Case: Save Result
Actors: User, Mobile App, API, Database

Description: This use case occurs when a user wishes to save the result of the diagnosis which
was gathered by the upload image function. Once the user is presented with the diagnosis, they
may select the save button which will save this information to database. The user must be logged
in to perform this action.

Main Success Scenario:

User is presented with the diagnosis from uploading the image.

The user selects the save result option.

The result of the diagnosis is sent to the log record function in the API.

The API sends this record to the database, to be stored on Log Table.

A confirmation is sent from the database back to the API.

The API sends this confirmation back to the Mobile App.

The mobile app outputs this confirmation message to the user that the result has been saved.

Nook~owe

6. Add New User

Use Case: Add New User
Actors: Administrator, Web App, API, Database

Description: This use case occurs when the administrator wishes to create a new user. The
administrator accesses this function via the web application.

Main Success Scenario:

=

The admin selects the Add New User option from the main menu.

The admin enters the credentials of the user, including first name, surname, email and
password.

The admin selects send.

The information entered is validated for minimum requirements.

The information is sent to the APl where the CRUD operation is performed.

The API sends this data to the database, where is compared to the User Table for duplicates.
The information is saved in the User Table.

The database sends the result of successful or unsuccessful save back to the API.

The API sends this result back to the Web App.

10 The Web App outputs the successful or unsuccessful confirmation message to the admin.

N

©oN O~

7. Manage Users

Use Case: Manage Users
Actors: Administrator, Web App, API, Database

Description: This use case occurs when the administrator wishes to modify a user’s account
details. The administrator performs this action from the web application.

Main Success Scenario:

1. The admin selects the Manage User’s option from the main menu.

2. The admin selects a user from a drop-down menu.

3. Once a user is selected, the admin can modify all credentials, such as email, names and
password.

4. Once modified, the admin selects send.

5. The information entered is validated for minimum requirements.

6. The information is sent to the API where the CRUD operation is performed.

7. The API sends this data to the database, where is compared to the User Table for duplicates.

8. The information is saved in the User Table.

9. The database sends the result of successful or unsuccessful save back to the API.

10. The API sends this result back to the Web App.

11. The Web App outputs the successful or unsuccessful confirmation message to the admin.

8. Add New Disease

Use Case: Add New Disease
Actors: Administrator, Web App, API, Database

Description: This use case occurs when the administrator wishes to enter a new disease. The
administrator accesses this function via the web application.

Main Success Scenario:

The admin selects the Add New Disease option from the main menu.

The admin enters the information regarding the new disease.

The admin selects send.

The information entered is validated for minimum requirements.

The information is sent to the APl where the CRUD operation is performed.

The API sends this data to the database, where is compared to the Disease Table for
duplicates.

7. The information is saved in the Disease Table.

8. The database sends the result of successful or unsuccessful save back to the API.

9. The API sends this result back to the Web App.

10. The Web App outputs the successful or unsuccessful confirmation message to the admin.

oakrowpnE

9. Manage Diseases

Use Case: Manage Diseases
Actors: Administrator, Web App, API, Database

Description: This use case occurs when the administrator wishes to modify the disease library.
The administrator performs this action from the web application.

Main Success Scenario:

The admin selects the Manage Disease option from the main menu.

The admin selects a disease from a drop-down menu.

Once a user is selected, the admin can modify all information regarding the disease.
Once modified, the admin selects send.

The information entered is validated for minimum requirements.

The information is sent to the APl where the CRUD operation is performed.

The API sends this data to the database, where is compared to the Disease Table for
duplicates.

The information is saved in the Disease Table.

The database sends the result of successful or unsuccessful save back to the API.
10. The API sends this result back to the Web App.

11. The Web Application outputs the successful or unsuccessful confirmation message to the
admin.

NoogkrwbdPE

© ©

10. Create Report

Use Case: Create Report

Actors: Administrator, Web App, API, Database

Description: This use case occurs when the administrator wishes to create a report from the
information stored in the database. The administrator performs this action from the web

application.

Main Success Scenario:

1. The admin selects the Create Report option from the main menu.

2. The admin can select multiple options from multiple drop-downs, including users, diseases,
times and dates.

3. The admin selects the appropriate criteria they wish to create a report from.

4. The selected criteria is sent to the API, where a report is generated.

5. The API uses data from the database, including User Table, Log Table and Disease Table.

6. The API collects the required data and transforms it into the information in the form of a
report.

7. The API sends this report back to the Maobile App.

8. The Web Application outputs this report to the admin.

10

System Sequence Diagrams

1. Login

Web API
Maobile App

attemptLogin{usemame, password)

|
by

renderLoginView()

|

|

}
ALT: Incorrect formatting of email or passwol’d)

ERROR: Incorrect formatting

4

DISPLAY : Succcesful Login

validateLogin{username,password) |

getUserCredentials(username,password)

™
<
|
—

ALT: Username and password error - Invalid Detail%

n

ERROR: Invalid Login

createSession(username)

et

11

2. Change Password

:Mobile App

User

renderChangePassword()

o

dttemptChangePassword(username,password,newPasswcﬁ!)
! I

ALT: Incorrect - Passwords match)

ERROR: Password Match

d
d

| validateChange(username,password, newPasswor

|
|
|
| | getUserCredentials{username, newPassword)
|
|

ALT: Username and password error - Invalid Details)

ERROR!: Invalid change

validChange(username, password)

DISPLAY: Succeesful change

e

12

3. Log out

:Mabile App Web API

renderMainMenu()

attemptLogOut()

endSession{usemame)

getUserCredentials(username)

DISPLAY: Session ended

13

4. Upload Image

‘Mobile App

rend erMainiMenu)

e

attemptlpload Image (intent: openCamera())

ALT: Camera error; Camera not installcd)

ERROR: Camera not installed

DISPLAY: Image captured

choose Image (| mage)

uplcadl mage(lmage) I

processCanny EdgeDetection{image)

processSegmentation(image)

processThresholding(image)

processHoughTrasnform(image)

. v B

ALT: Error: Unable to process image - No conncction)

Display (Unable to connect)

returnR esultimage,diagnosis)

result(diagnosis image)

DISPLAY: Disease result

A ——"""""7"7V"V/V7/V7/ /1 A

14

5. Save Result

Web AP

renderResultPage()

attemptSaveResuli(name)

|
|
|
|
|
|
|
i

attemptSaveResultiname, disease, image)

|
|
|
|
|
|
|
|
|
|

| |

| |

[{1

| |

| S—

| |

| | saveToDatabase(name, disease, image)

|

|

[I—

User
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
k
|
|
|

ALT: Connection error: Failed to connect to database)

ERROR: Connection lost

attemptSaveResulticonfirmed)

DISPLAY: Successful save

e

15

6. Add New User

Administrator
|

renderMainPage()

attemptNewlser(name, email, privileges)

.«
|
.|
:

s

attemptNewlUser(name, email, privileges)

saveToDatabase(name, email, privileges)

R

ALT: Error: User name already in use)

< ERROR: User already exists

attemptNewUser(confirmed)

DISPLAY: Successfully added user

|
|
|
<
=
|
|
|
|
|
|
|
'

16

7. Manage Users

Administrator

renderMainPage()

attemptManageUsers()

attemptManagelUsersi)

saveToDatabase()

R R

ALT: Error: Connection lost

ERROR: Connection to database lost

<

attemptManageUser(confirmed)

DISPLAY: Successfully edited user

e e et
it

17

8. Add New Disease

Web
Administrator

attemptMewDisease(name, type, symptoms)

| I
| I

| I
= i

| I

| renderMainPage() |
[I

| I

I

| I
1 I
I

attemptMewDisease(name, type, symptoms)

: saveToDatabase(name, type, symptoms)

ALT: Error: Disease already exists)

< ERROR: Disease already exists

atternptNewDisease(confirmed)

DISPLAY: Successfuly added disease

e S

18

9. Manage Disease

Datal

Administrator

renderiMainPage()

attemptManageDiseases()

attemptianageDiseases()

saveToDatabase()

base
|
|
|
|
|
|
|
|
|
:
|
’v‘ﬁl
|
—
|

ALT: Error: Connection lost]

< ERROR: Connection to database lost

attempiManageDiseases(confirmed)

l‘ DISPLAY: Successfully edited disease
|

ey S

19

10. Generate Reports

Administrator

|

|

|

|

|

renderMainPage() |

| I— |

| |

| |

createNewReport(iname, fields) E’: :

| |

| createNewReport{name, fields) |

i >

| |

| |

I e

| |
| | proccessReport(fields)

| |

| |

| |

ALT: Error: Disease not found)

ERROR: Disease not found for report

createNewReport{confirmed)

| DISPLAY: Successfully generated report

H

D

